got PPE?

your safety is nothing to experiment with
Outfitting UC’s Laboratory Heros

Ken Smith, CHP CIH RRPT
University of California Office of the President
UC Systemwide Laboratory Safety Manager

Erike Young
University of California Office of the President
Director of EH&S

American Chemical Society
San Francisco, CA 8-12-2014
Big Picture Timeline

- **Planning Ordering**
- **LHAT**
- **Event Reg.**
- **Fitting & Bulk Distribution**
- **Steady State**

- Q2 2013
- Q4 2013
- Q1 2014
- Q2 2014

- ~40,000 Researchers
Why PPE?

Elimination
Substitution
Isolation
Engineering
Administrative
PPE
Cal/OSHA 8 CCR 3320 Hazard Assessment.

- Employers are required to **assess** the workplace for hazards that will require PPE.
- This assessment **documented**
- **Select** PPE that will protect the worker from the hazards identified
- **Communicate** assessment and selection decisions
- **Train** researches on the PPE
- Select PPE that properly **fits** each lab worker
- **Use** the PPE
- ** Maintain** the PPE
Systemwide Policy on PPE

- Systemwide Training Policy: PPE Policy
- Submitted for OP review June 2012. – under adoption review
- Applies to
 - all laboratory areas and
 - all faculty, staff, volunteer, or visitor/visiting scholars.

http://policy.ucop.edu/
PPE Documentation

- Volume 1: System-Wide Program Requirements & Technical Resources
- Volume 2: Campus-Specific Bulk Distribution Event Guide
- Volume 3: Campus-Specific Steady State Program
1. Principal Investigators (PI)
Use the Laboratory Hazard Assessment Tool (LHAT) to:
- Create lab groups
- Assess workplace hazards to determine PPE to be used
- Invite lab staff and approve lab worker association
- Assign a delegate or designee to perform these actions (optional)
 - Documented in LHAT

2. Lab Worker
Use LHAT to:
- Identify with a lab group
- Review hazard assessment
- Complete the Outfit for Safety Training and quiz
- Print a PPE voucher
 - Documented in LHAT

3. Schedule Fitting Time
Schedule fitting time with EventBrite.
 - Documented in EventBrite

4. Fitting and Distribution
Fitting and distribution of the PPE.
 - Documented by Mission Linen

5. PPE Maintenance
Researcher uses program in place to maintain and replace PPE.
- Dirty coats go into a specially marked hamper
- Clean coats returned on hangers
- Dirty coats go into the mail (in a sealed envelope)
- Clean coats return on hangers
- Dirty coats go into the mail (in a sealed envelope)
- Clean coats return in the mail or delivery service
Principal Investigators (PI)

Use the Laboratory Hazard Assessment Tool (LHAT) to:
- Create lab groups
- Assess workplace hazards to determine PPE to be used
- Invite lab staff and approve lab worker association
- Assign a delegate or designee to perform these actions (optional)

☑️ Documented in LHAT
<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>C2. Working with hazardous liquids or other materials which create a splash hazard</th>
<th>Eye or skin damage</th>
<th>Poisoning</th>
<th>Chemical-resistant apron should be considered</th>
<th>Face shield should be considered</th>
<th>Lab coat</th>
<th>Chemical-resistant gloves</th>
<th>Chemical splash goggles</th>
<th>In adjacent area:</th>
<th>Safety glasses</th>
<th>Lab coat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>C3. Working with small volumes (<= 4L) of corrosive liquids or solids</td>
<td>Low probability for a splash hazard</td>
<td>Eye or skin damage</td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td>Chemical-resistant gloves</td>
<td></td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>C4. Working with large volumes (> 4L) of corrosive liquids or solids</td>
<td>Low probability for a splash hazard</td>
<td>Eye or skin damage</td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td>Chemical-resistant apron</td>
<td>Chemical-resistant gloves</td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>C5. Working with small volumes (<= 1L) of flammable solvents/materials when no reasonable ignition sources are present</td>
<td>Eye or skin damage</td>
<td>Potential poisoning through skin contact</td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td>Chemical-resistant gloves</td>
<td></td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>C6. Working with large volumes (> 1L) of flammable solvents/materials</td>
<td>Major skin or eye damage</td>
<td>Major fire</td>
<td>Potential poisoning through skin contact</td>
<td>Flame-resistant cutout gloves should be considered</td>
<td>Safety glasses</td>
<td>Chemical-resistant gloves</td>
<td>Flame resistant lab coat (NFPA 2112)</td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>C7. Working with any quantity of flammable solvents/materials when there are reasonable ignition sources present, or working in areas where flammable concentrations of vapors or gas may be present</td>
<td>Major skin or eye damage</td>
<td>Major fire</td>
<td>Potential poisoning through skin contact</td>
<td>Flame-resistant outer gloves highly recommended</td>
<td>Safety glasses</td>
<td>Chemical-resistant gloves</td>
<td>Flame resistant lab coat (NFPA 2112)</td>
<td>All personnel in laboratory</td>
<td>Safety glasses</td>
<td>Flame resistant lab</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>C8. Working with Category 1 or 2 acutely toxic chemicals</td>
<td>Chemicals pose a high level of immediate threat</td>
<td>Safety classes</td>
<td></td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td>Chemical-resistant gloves</td>
<td>Flame resistant lab coat (NFPA 2112)</td>
<td>Safety glasses</td>
<td>Lab coat</td>
<td></td>
</tr>
</tbody>
</table>
So what type of Lab Coat Do you Need?

What’s the diff?
Dr. Charles Perrin – Professor of Chemistry
50 years of Teaching, Research and Service
PURPOSE OF FR FABRICS

Reduce Burn Injury and Increase Chance of Survival

- Does Not Ignite and Continue to Burn
- Does Not Melt and Drip
- Maintains a Barrier
- Insulates the Wearer from Heat
- Resists Breaking Open
- Provides Valuable Escape Time

Garment Purchasing Considerations:

- Durability / Value in Use
- Comfort / Design
- Reactivity to Oxidizers
- Particle Shedding
 - Predicted Burn Injury
SO WHAT’S RELEVANT?

HAZARD ASSESSMENT
• What are you protecting against?

NFPA 2113
• Hazard Assessment
• Garment selection, care, use and maintenance

NFPA 2112
• Standard for flame resistant garments
• 7 tests to pass including <50% body burn at 3 sec, 2 cal/cm²/sec

Garment Manufacturer
• Licensee
• ISO Certification
• Experience, Focus
• Design and Style

Industrial Laundry
• Experience with FR Garments
• Program Management
• Experience, Service

PPE Distributor
• Program Management
• Experience, Service
• Garment Maintenance/Repair?

Other NFPA Standards
• NFPA 70E –
 • Designed for electricians working on energized equipment (Different Hazard)

• NFPA 701 –
 • Flame propagation for textiles and films (Not for Garments)

Fabric Technology ...

NOT?
FABRIC PERFORMANCE

<table>
<thead>
<tr>
<th>Inherent</th>
<th>Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.e. Nomex®, Kevlar®</td>
<td>i.e. UltraSoft®, Proban®</td>
</tr>
</tbody>
</table>

Fiber molecular structure does not support combustion

Chemicals added to fabric produce char/gas to inhibit combustion

PROS
- ✓ Permanent FR protection
- ✓ Lighter weight
- ✓ Durable
- ✓ Fiber resistant to chemical degradation
- ✓ Exceeds minimum FR standard

CONS
- o Higher initial cost
- o FR can be compromised by bleach/chemical exposure
- o Shorter life span
- o “Activates” beyond minimum exposure
- o Higher particle shedding
What if FR PPE is NOT ENOUGH?
Chemical Protection should not compromise Fire Protection

• Most chemical protective garments are flammable and should not be worn when fire is a hazard

• Tychem® ThermoPro fabric provides TRIPLE HAZARD protection from liquid-chemical splash, flash fire and electric arc by combining DuPont™ Tychem® chemical barrier and DuPont™ Nomex® FR technology

 • Meets FR requirements of NFPA 2112 standard

 • Provides at least 30 minutes of protection against more than 180 chemical challenges
Selection Guide for FR was developed...

<table>
<thead>
<tr>
<th>Product Name</th>
<th>FR Type</th>
<th>Manufacturer(s)</th>
<th>FR Rating/Test</th>
<th>Fabric Weight (oz/yd)</th>
<th>% Laundering Shrinkage</th>
<th>Laundering Colorfastness</th>
<th>% Moisture regain</th>
<th>Tenacity (lbs)</th>
<th>Chemical & Other Incompatibilities / Limitations</th>
<th>Garment Life / Color Options</th>
<th>Standard Sizes / Comfort</th>
<th>Price</th>
<th>Hazard Level (HL) Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomex IIIA</td>
<td>Inherently FR</td>
<td>Bulwark Dupont Workkne</td>
<td>NFPA 2112, NFPA 70E</td>
<td>4.5 - 7.3</td>
<td><2 - 3.5</td>
<td>Fair to Good</td>
<td>4.5 - 5.5 (moderate)</td>
<td>240 x 150</td>
<td>No chemical splash protection. Good resistance to alkaloids. Unaffected by most acids, unless exposed for long periods to high concentration acids. No chlorine bleach laundering.</td>
<td>Excellent, reported to last 3-5 times longer than cotton or chemically treated garments / Many color options</td>
<td>Semi-breathable – not as good as cotton. Can feel bulkier than cotton, "itchy", stiff, or rough</td>
<td>$100/ea</td>
<td>For use up to HL-4 Highest FR protection rating, most durable, longest life, fewest chemical incompatibilities. Cost higher than most other FR.</td>
</tr>
<tr>
<td>Tecasafr Plus Cool Touch 2</td>
<td>Inherently FR</td>
<td>TenCate Bulwark</td>
<td>NFPA 2112, NFPA 70E</td>
<td>5.8 - 8.5</td>
<td><3</td>
<td>Fair to Good</td>
<td>No data</td>
<td>135 X 85 lbs</td>
<td>No chemical splash protection. Newer material.</td>
<td>Excellent / Many</td>
<td>Semi-breathable. Can feel bulkier than cotton, "itchy", stiff, or rough. May not be widely available as Nomex.</td>
<td>$80/ea</td>
<td>For use up to HL-4 Highest FR protection rating, most durable, longest life, fewest chemical incompatibilities. Cost lower than Nomex, but higher than most treated FR.</td>
</tr>
<tr>
<td>Teczen</td>
<td>Inherently FR</td>
<td>Ashburn Hill Corp.</td>
<td>NFPA 2112</td>
<td>5.5</td>
<td><3</td>
<td>Fair to Good</td>
<td>6</td>
<td>110 X 80 lbs</td>
<td>No specific info available</td>
<td>No specific info available</td>
<td>All sizes</td>
<td>TBD</td>
<td>More info needed</td>
</tr>
<tr>
<td>Indura Ultra Soft Arapahoe KL16</td>
<td>Chemically Treated FR: Cotton Blend 88%/12% nylon - THP-treated</td>
<td>Westex Unknown Bulwark</td>
<td>NFPA 2112, NFPA 70E</td>
<td>7 - 9</td>
<td>3 - 5</td>
<td>Fair</td>
<td>8.5 - Arapahoe</td>
<td>130 x 100, 110 x 100 - Arapahoe 129 x 60 - KL16</td>
<td>FR properties degraded by petroleum and other flammable liquids. Not splash resistant. No chemical splash protection. Degraded by acids. No chlorine bleach laundering. Flame-resistant fabrics treated with a phosphorus containing flame retardant should not be used in chemical operations where contact with strong oxidizers (e.g. >10% sodium hypochlorite, NaOCl) or reducing agents (e.g. sodium hydrosulfite, Na2S2O4) is possible. Contact with these chemicals may result in chemical burns to the wearer. Not ideal for static control. Good / Many Cotton has poor resistance to mildew, aging, sunlight. Nylon content improves abrasion resistance. FL guaranteed for life of product. Reportedly 50% longer than 100% cotton.</td>
<td>Breathable, soft, more comfortable than synthetics</td>
<td>Good / Many Cotton has poor resistance to mildew, aging, sunlight. Nylon content improves abrasion resistance. FL guaranteed for life of product. Reportedly 50% longer than 100% cotton.</td>
<td>$50/ea</td>
<td>For use up to HL-3 High FR protection rating, chemical incompatibilities with select oxidizers and reducing agents. Feels similar to standard cotton-blend lab coats. Cost lower than Nomex and other inherent FR.</td>
</tr>
</tbody>
</table>
Type of Basic PPE

<table>
<thead>
<tr>
<th></th>
<th>FR NFPA 2112</th>
<th>Non-FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td>Traditional Open Cuff</td>
</tr>
<tr>
<td>Female</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Male</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Personal Protective Equipment (PPE)

VOUCHER

<table>
<thead>
<tr>
<th>Personal Information</th>
<th>Lab Group Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryan Mosley</td>
<td>Pt: Ryan Mosley</td>
</tr>
<tr>
<td>rmosley@ucdavis.edu</td>
<td>Lab Group: Dr Mosley's Chem Lab</td>
</tr>
<tr>
<td>Hazard Assessment Reviewed: 10/14/2013</td>
<td>PIs Department: ACADEMIC & STAFF ASST PROG</td>
</tr>
<tr>
<td>PPE Training Completed: 10/14/2013</td>
<td>Hazard Assessment Certified by Pt: 10/14/2013</td>
</tr>
</tbody>
</table>

Recommended Personal Protective Equipment

The items below can be picked up at your campus **Product Distribution Center**:

- Safety glasses
- Flame resistant lab coat (NFPA 2112)
- Barrier lab coat impervious to fluids
- Chemical splash goggles
Success of an PPE program is dependent on **three** factors:

1. Fit
2. Fit
3. Fit
Why do you think that fit is the most important factor in selecting PPE?
Eyewear – Systemwide

![Bar chart showing eyewear usage across different locations](image-url)
Bulk Distribution Event
FREE PPE!
PPE Distribution Event

[Event Date]
[Event Time]
[Event Place]
[Event Campus]
[Event EventLink]

Watch Training video, take a quiz, and print a PPE voucher.
Sign up on Eventbrite for a convenient time to attend the event.
Bring PPE voucher and get FREE PPE.

For more information, please contact XXXX-XXXX at XXXX-XXXX.

UNIVERSITY OF CALIFORNIA