Lessons Learned on Surviving Worst-Case Reactivity Hazards

Explosion Consequence Assessment

American Chemical Society (ACS)
246th ACS National Meeting
Indianapolis, Indiana
September 9, 2013

J. Kelly Thomas, Ph.D.
Baker Engineering and Risk Consultants
San Antonio, TX
(KThomas@BakerRisk.com)
Outline

• Purpose

• Design Basis Scenario

• Potentially Relevant Explosion Scenarios
 ▪ Condensed phase explosion
 ▪ Bursting pressure vessel
 ▪ Vapor cloud explosion
 ▪ Combustible dust explosion

• Consequence Assessment Methods
 ▪ Blast loads (primary focus)
 ▪ Fragments
 ▪ Structural response

• Results from example evaluation
Purpose

• Provide Overview of
 ▪ Potentially relevant explosion scenarios
 ▪ Consequence assessment methods
• Not comprehensive or in-depth
• Emphasis on blast load assessment
• Contact Robert Shumate (P&G) or Kelly Thomas (BakerRisk) if need additional information
Design Basis

• Relevant explosion scenarios and scenario definition must be specified “up front”
 ▪ Scenarios that structures will be designed to
 ▪ Design basis scenarios

• Owner/operator must “own” design basis

• May not be able to completely rule out very low probably events, but may choose not to design for them
 ▪ Excluded from design basis
 ▪ Asteroid strike
 ▪ Can utilize risk analysis to place in context
Potentially Relevant Scenarios

- Condensed phase explosion
- Bursting pressure vessel (BPV)
 - At normal operating pressure (degradation)
 - At bursting pressure (overpressure)
 - Entire vessel or fitting
- Internal vapor cloud explosion (VCE)
 - Deflagration
 - Detonation
- Internal combustible dust explosion
Condensed Phase Explosion (1 of 4)

- Uncontrolled runaway leading to detonation of condensed phase within vessel
- Pressurization rate so high vessel cannot respond
- Can treat as high explosive (e.g., TNT)
- Consequence assessment methods
 - Internal blast loads
 - External blast loads
Internal blast loads
- TNT blast charts (e.g., TM5-1300)
 - Must account for reflections (pressure and impulse)
 - Must account for reverberations (primarily impulse)
- Quasi-static pressure during venting
- Simplified computer codes
- Computational fluid dynamics (CFD) codes (e.g., BakerRisk’s BWTI simulation package)

External blast loads
- Simplified design guides (e.g., TM5-1300)
- CFD codes (e.g., BWTI)
Bursting Pressure Vessel (1 of 4)

- At normal operating pressure
 - Degradation of vessel (e.g., corrosion)
- At bursting pressure
 - Overpressure
 - Inadequate pressure relief
 - Beyond design basis event (e.g., explosion)
- Consequence assessment methods
 - Internal blast loads
 - External blast loads
Internal blast loads
- BPV blast charts (e.g., BakerRisk, CCPS)
 - Must account for reflections (pressure and impulse)
 - Must account for reverberations (primarily impulse)
- Quasi-static pressure during venting
- Computational fluid dynamics (CFD) codes (e.g., BakerRisk’s BWTI simulation package)
 - Routinely use for high pressure test enclosures

External blast loads
- Simplified design guides, treating BPV as equivalent HE charge (e.g., TM5-1300)
- CFD codes (e.g., BWTI)
Internal VCE (1 of 8)

- VCE combustion mode
 - Release of flammable gas/spray/liquid from a vessel or supply line filling portion of enclosure and then being ignited
 - Deflagration (subsonic, “normal”)
 - Detonation
 - Direct initiation, requires high energy source
 - Deflagration-to-detonation transition (DDT), which is normally the only detonation case of interest

- Consequence assessment methods
 - Potential for DDT
 - Internal blast loads
 - External blast loads
Assessment of potential for DDT
- Concern primarily for high reactivity fuels (e.g., \(\text{C}_2\text{H}_2, \text{C}_2\text{H}_4, \text{H}_2, \) etc.)
- Judgment
- CFD based assessment (FLACS)
 - BakerRisk’s Explosion Research Cooperative (ERC)

Internal blast loads
- NFPA 68 standard (2013)
 - \(A_v = f(P_{\text{max}}, A_{s\text{obst}}, A_{s\text{encl}}, \text{fuel, L/D}) \)
 - Can account for cloud which partially fills enclosure
 - Cloud volume (bounding, dispersion)
- CFD codes (e.g., FLACS)
External blast loads
 - Some guidance available in NFPA 68
 - CFD codes (e.g., BWTI, FLACS)
Combustible Dust Expl. (1 of 1)

- Concern where have combustible dust deposited within enclosure
- Combustible dust = “dust made of anything that can burn”
- Typically concerned about secondary dust explosion (primary event suspends dust and provides ignition source)
- Internal loads via NFPA 68
- External loads
 - NFPA 68 provides limited guidance
 - External VCE equivalent
 - BakerRisk’s Explosion Research Cooperative
• Condensed phase (high explosive)
 ▪ Cased weapon relationships (e.g., TM5-1300)

• Bursting pressure vessel
 ▪ Simplified design guidance (Baker et al. 1983)

• Fittings/plugs (not vessel failure)

• Penetration evaluation
 ▪ Simplified design guidance (e.g., TM5-1300)
 ▪ Industry testing programs
 ▪ BakerRisk’s High Pressure Joint Industry Program (HP JIP)
 ▪ Made of primarily of down-hole tool companies
 ▪ Focused on defining fitting/plug failure velocity and shield penetration characteristics
Structural Response (1 of 3)

• Differences between assessing buildings for explosion loads and typical loads
 ▪ Consider both blast overpressure and impulse
 ▪ Allow deformation for accident loads
 ▪ Not treated as static elastic load

• Generally consider both internal and vented blast loads

• Methods
 ▪ Single-degree-of-freedom (SDOF)
 ▪ Multiple packages available
 ▪ Multiple-degree-of-freedom (MDOF)
 ▪ Finite element analysis (FEA)
Response criteria set the amount of deformation a component can undergo.

Response criteria per ASCE (and US DOD) in terms of ductility and support rotations:
- High response corresponds to incipient failure
- Normally design to medium or low response levels

Can develop pressure-impulse curves corresponding to response levels, or evaluate for specific load case.
Structural Response (3 of 3)
Example (1 of 3)

- Existing test cell (8’ x 8’ x 10’)
 - 12 in reinforced concrete, reinforced concrete shield wall outside vented wall, one wall vented

- Bursting pressure vessel
 - 5 gallon 1900 psig MAWP
 - 2 gallon 5325 psig MAWP
 - Failure at MAWP per client specification
 - Loads based on BPV blast curves, accounting for reflection and reverberation (see table)

- Penetration evaluation (see table)

- Hydrogen deflagration (see table)
Example (2 of 3)

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Surface</th>
<th>Pressure (psig)</th>
<th>Impulse (psi-ms)</th>
<th>Duration (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 gal</td>
<td>Wall</td>
<td>110</td>
<td>46</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
<td>19</td>
<td>28</td>
<td>2.9</td>
</tr>
<tr>
<td>2 gal</td>
<td>Wall</td>
<td>140</td>
<td>49</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Roof</td>
<td>23</td>
<td>31</td>
<td>2.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Quasi-static Pressure Load (psig)</th>
<th>Blow-down Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 gal</td>
<td>2.0</td>
<td>11</td>
</tr>
<tr>
<td>2 gal</td>
<td>2.3</td>
<td>12</td>
</tr>
</tbody>
</table>
Fragment Results (concrete)

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Fragment Velocity (fps)</th>
<th>Thickness to Prevent Perforation (in)</th>
<th>Thickness to Prevent Spall (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 gal</td>
<td>110</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>2 gal</td>
<td>120</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P_{max} (psig)</th>
<th>Duration (ms)</th>
<th>dP/dt_{max} (psi/ms)</th>
<th>Time to P_{max} (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>100</td>
<td>3.0</td>
<td>1.6</td>
</tr>
</tbody>
</table>