Assessing Laboratory Ventilation Effectiveness

Ralph Stuart, CIH
Chemical Hygiene Officer
Cornell University
Learning Objectives

1) Understand the Chemical Hygiene perspective on Laboratory Ventilation
2) Describe the importance of “Ventilation Effectiveness” and 2 ways to assess it
3) Review a case study to answer questions about a specific laboratory
Lab Ventilation as an Chemical Hygiene Tool

The goal of general laboratory ventilation is to control:
1. Temperature
2. Fire Hazard
3. Odor
4. Toxicity
5. Humidity (sometimes)
6. Dust (sometimes)
Elements and Functions of the Lab Ventilation System

- Fume Hoods: contain a chemical process
- Chemical Storage Cabinets: chemicals in storage
- General Laboratory Ventilation: delivers and removes air to spaces occupied by humans
The Macroscale Ventilation System

Macroscale Laboratory Ventilation

Macroscale chemical hygiene issues include pressurization between spaces and ventilation diversity (both hood and lab space)
Microscale chemical hygiene parameters include fume hood face velocity and containment assessment.
Mesoscale chemical hygiene issues include how ventilation rate (ACH) and how effectively the room is ventilated.
The Importance of Ventilation Effectiveness

- Ventilation controls chemical contaminants by *promoting exponential decay* of the concentration of those contaminants.
- The decay rate for a specific chemical release depends on the location of the source relative to the ventilation system, as this impacts the ventilation rate.
- One measurement does not describe the general ventilation rate for a particular place in the lab or a particular event in the lab.
Assessing Ventilation Effectiveness: CFD modelling

1. Computational Fluid Dynamic models: about $10,000/lab, usually used for new labs, where there is a project budget and easily available room dimensions to work with.

2. Usually assess a release in the form of a spill to assess magnitude of concentrations in dead spots.
Assessing Ventilation Effectiveness: Another Approach

1. Use fire extinguishers to measure gas decay patterns within an existing laboratory by raising CO$_2$ concentrations across the lab to 10,000 and then measure its decay in different locations.

A BSL 3 lab, where decay is measured by eyeballing a smoke generator
Safety Considerations

For People

- **Electrostatic discharge:** put the extinguisher on the floor
- **CO₂ exposure:** size the extinguisher to the room
- **Ergonomics:** use carts to move the extinguishers
- **Noise:** wear hearing protection
- **Eye protection:** dry ice flies everywhere

For lab equipment and computers

- **Dry Ice Spatter:** Cover equipment to prevent dry ice from landing on it

Organic class lab, about 40 ACH
Typical Results

The goal is to get a uniform concentration of CO$_2$ of about 10,000 ppm in the space. This success of this is indicated by the shape of the curve.

Parameters of interest:
- Decay rate (expressed as ACH or half-life)
- r-squared of the decay curve (typically > 0.9)
- Peak CO$_2$ level suggests how strong the source was
Guide to Interpreting Test Results

1. Decay rate \approx \text{building supplied decay rate:}
 the room was effectively filled with CO\(_2\) and that location was seeing what the building is providing

2. Decay rate > \text{the building rate:}
 the room was not filled, so the decay rate was increased by expansion of the contaminant gas away from the source.

3. Decay rate < \text{the building rate:}
 the monitor was located in a “dead spot” in the room.

This assumes that you have good data about what the building is delivered.
Building Control System (10 ACH)

<table>
<thead>
<tr>
<th>Run</th>
<th>North side</th>
<th>South side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hood</td>
<td>sink</td>
</tr>
<tr>
<td>Sash closed</td>
<td>13.04</td>
<td>8.52</td>
</tr>
<tr>
<td>r-squared</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>Sash 18" open</td>
<td>22.51</td>
<td>11.73</td>
</tr>
</tbody>
</table>
A Case Study

- Will a new lab control odors from the biomass fermentation process?
Air Movement in the Lab

Building Control System (14 ACH)

<table>
<thead>
<tr>
<th></th>
<th>West Side</th>
<th>East Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>14.09</td>
<td>10.86</td>
</tr>
<tr>
<td>CW</td>
<td>14.22</td>
<td>8.45</td>
</tr>
<tr>
<td>SW</td>
<td>11.74</td>
<td>9.69</td>
</tr>
</tbody>
</table>
The Results

• The building system supplies more air than we measure, but there are still more than 10 ACH in the critical areas.

• The sink and eastern walls are less well ventilated than areas along the western walls, where supply air is delivered. Locating the fermentation stands along the western wall is the best location for them.

• Pressurization of the room relative to other rooms is critical to avoid odors spreading.
Parting Thoughts

"Thanks to yoga, I now gently stretch to conclusions instead of jumping to them"
Questions?

Lab Safety News on Twitter

• Cornell Lab Safety twitter feed: @cornelllabsafe

• ACS Division of Chemical Health and Safety: @acsdchcas

• Laboratory Sustainability News: @labsustain